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Abstract. In this article, we study the problem of online market clearing where there is one commodity
in the market being bought and sold by multiple buyers and sellers whose bids arrive and expire at
different times. The auctioneer is faced with an online clearing problem of deciding which buy and sell
bids to match without knowing what bids will arrive in the future. For maximizing profit, we present a
(randomized) online algorithm with a competitive ratio of ln(pmax − pmin)+1, when bids are in a range
[pmin, pmax], which we show is the best possible. A simpler algorithm has a ratio twice this, and can be
used even if expiration times are not known. For maximizing the number of trades, we present a simple
greedy algorithm that achieves a factor of 2 competitive ratio if no money-losing trades are allowed.
We also show that if the online algorithm is allowed to subsidize matches—match money-losing pairs
if it has already collected enough money from previous pairs to pay for them—then it can actually
be 1-competitive with respect to the optimal offline algorithm that is not allowed subsidy. That is, for
maximizing the number of trades, the ability to subsidize is at least as valuable as knowing the future.
We also consider objectives of maximizing buy or sell volume and social welfare. We present all of
these results as corollaries of theorems on online matching in an incomplete interval graph.

We also consider the issue of incentive compatibility, and develop a nearly optimal incentive-
compatible algorithm for maximizing social welfare. For maximizing profit, we show that no
incentive-compatible algorithm can achieve a sublinear competitive ratio, even if only one buy bid
and one sell bid are alive at a time. However, we provide an algorithm that, under certain mild as-
sumptions on the bids, performs nearly as well as the best fixed pair of buy and sell prices, a weaker
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but still natural performance measure. This latter result uses online learning methods, and we also
show how such methods can be used to improve our “optimal” algorithms to a broader notion of
optimality. Finally, we show how some of our results can be generalized to settings in which the
buyers and sellers themselves have online bidding strategies, rather than just each having indivi-
dual bids.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Competitive analysis, double auctions, exchanges, online
algorithms

1. Introduction

Exchanges (aka double auctions)—that is, centralized markets with potentially
multiple buyers and multiple sellers—are perhaps the most important institutions
for conducting commerce. Well-known applications include markets for stocks,
bonds, commodities, and derivatives. Several independent business-to-business ex-
changes have also been founded (e.g., ChemConnect). In addition, large established
companies have started to form buying consortia such as Covisint, Exostar, and
Trade-Ranger, and large-scale sourcing of transportation services has been col-
laboratively conducted by manufacturers and their retailer customers [Sandholm
et al. 2006, page 60]. These sourcing trends mean that instead of one com-
pany buying from multiple suppliers, we have multiple companies buying from
multiple suppliers. In other words, part of sourcing is moving toward an ex-
change format. Exchanges have also started to play roles in the allocation of
bandwidth, as well as in resource allocation in operating systems and computa-
tional grids.

These trends have led to an increasing need for fast market clearing algorithms
for exchanges. Such algorithms have been studied in the offline (batch) context
[Sandholm and Suri 2002, 2003; Sandholm et al. 2002; Wurman et al. 1998a;
Sandholm and Suri 2006]. Also, recent electronic commerce server prototypes
such as eMediator [Sandholm 2002] and AuctionBot [Wurman et al. 1998b] have
demonstrated a wide variety of new market designs, leading to the need for new
clearing algorithms.

In this article, we study the ubiquitous setting where there is a market for one
commodity, for example, the stock of a single company, oil, electricity, memory
chips, or CPU time, and clearing decisions must be made online. For simplicity,
we assume that each buy bid and each sell bid is for a single unit of the commod-
ity (to buy or sell multiple units, a bidder could submit multiple bids1). In these
settings, the auctioneer has to clear the market (match buy and sell bids) without
knowing what the future buy/sell bids will be. The auctioneer faces the tradeoff
of clearing all possible matches as they arise versus waiting for additional buy/sell

1This works correctly if the buyers have diminishing marginal valuations for the units (the first unit is
at least as valuable as the second, etc.) and the sellers have increasing marginal valuations for the units.
Otherwise, the auctioneer could allocate the bidder’s k + 1st unit to the bidder without allocating the
bidder’s kth unit to the bidder, thus violating the intention of the bid by allocating a certain number
of units to the bidder at a different price than the bidder intended. These restrictions seem natural—at
least in the limit—as buyers get saturated and sellers run out of inventory and capacity to produce.
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bids before matching. Waiting can lead to a better matching, but can also hurt be-
cause some of the existing bids might expire or get retracted as the bidders get tired
of waiting.

We formalize the problem faced by the auctioneer as an online problem in which
buy and sell bids arrive over time. When a bid is introduced, the auctioneer learns the
bid price and expiration time (though some of the simpler algorithms will not need
to know the expiration times). At any point in time, the auctioneer can match a live
buy bid with a live sell bid, removing the pair from the system. We will consider the
problem both from the perspective of pure online algorithms—in which our goal is
to design algorithms for the auctioneer whose performance is comparable to the best
achievable in hindsight for the bid sequence observed—and from the perspective
of incentive-compatible mechanism design, in which we also are concerned that it
be in the bidders’ interests to actually bid their true valuations.

Note that while the Securities Exchange Commission imposes relatively strict
rules on the matching process in securities markets like NYSE and NASDAQ
[Domowitz 1993], there are large numbers of other markets on which items other
than securities are being exchanged (e.g., commodities markets and business-to-
business trading). In those markets, the exchange (AKA auctioneer) has significant
flexibility in deciding which buy bids and sell bids to accept. In this article, we will
study how well the auctioneer can do in those settings, and with what algorithms.

1.1. BASIC DEFINITIONS. We will assume that all bids and valuations are
integer-valued (e.g., that money cannot be split more finely than pennies) and lie
in some range [pmin, pmax].

Definition 1.1. A temporal clearing model consists of a set B of buy bids and
a set S of sell bids. Each bid v ∈ B ∪ S has a positive price p(v), is introduced at a
time ti (v), and is removed at a time t f (v). A bid v is said to be alive in the interval
[ti (v), t f (v)]. Two bids v, v ′ ∈ B ∪ S are said to be concurrent if there is some time
when both are alive simultaneously.

Definition 1.2. A legal matching is a collection of pairs {(b1, s1), (b2, s2), . . .}
of buy and sell bids such that bi and si are concurrent.

An offline algorithm receives knowledge of all buy and sell bids up front. An
online algorithm only learns of bids when they are introduced. Both types of algo-
rithms have to produce a legal matching: that is, a buy bid and sell bid can only be
matched if they are concurrent. In our basic model, if the algorithm matches buy
bid b with sell bid s (buying from the seller and selling to the buyer), it receives
a profit of p(b) − p(s). We will use competitive analysis [Borodin and El-Yaniv
1998] to measure the quality of an online algorithm, comparing its performance
on a bid sequence (in expectation, if the algorithm is randomized) to that of the
optimal offline solution for the same sequence. Note that in this measure we do not
worry that had we acted differently, we might have seen a better sequence of bids:
the comparison is only to the optimum on the sequence observed. Formally, the
competitive ratio of an algorithm is the worst-case, over all possible bid sequences,
of the ratio of its performance to the optimal offline solution on that sequence. We
will consider several measures of “performance”, including total profit, number of
trades, and social welfare (see Section 1.3).

In Section 5.2, we consider a generalization of the temporal clearing model in
which bidders can change their bids over time. In this generalization, each bid can
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be a function of time, with only the values so far revealed to the online algorithm,
and the goal of the algorithm is to be competitive with the optimal offline solution
for the actual functions.

The basic competitive-analysis model implicitly treats bidders as truthful in the
sense that it takes the bids as they come and compares to the offline optimum on the
same bid sequence. This is a reasonable model in settings where the gaps between
buy and sell bids are fairly small compared to the prices themselves, and where true
valuations are difficult to quantify (e.g., say in a stock market). However, we also
consider in Section 6 the more general model of incentive-compatible mechanism
design, in which we assume each bidder has a private valuation for the commodity,
and our goal is to compete with respect to the optimal offline solution for the actual
valuations of all the bidders. In this context, if we want the bidders to bid their true
valuations, the mechanism needs to make it be in their interest to do so. We assume,
though we relax this for some of our results, that the start and end times for bids
are not manipulable: the only control agents have is over their bid values.2 Even
this, however, provides a sharp contrast between the setting of exchanges, which
we consider here, and the simpler case of auctions.

1.2. AUCTIONS VERSUS EXCHANGES. Competitive analysis of auctions (mul-
tiple buyers submitting bids to one seller) has been conducted by a number of
authors [Bagchi et al. 2001; Bar-Yossef et al. 2002; Blum et al. 2004; Goldberg
et al. 2000, 2001; Lavi and Nisan 2000] in both online and offline settings. In
this article, we present the first competitive analysis of online exchanges (where
there can be multiple buyers and multiple sellers submitting bids over time). Com-
petitive analysis of 1-shot exchanges (all bids concurrent) has been performed by
Deshmukh et al. [2002]. Exchanges are a generalization of auctions—one could
view an exchange as a number of overlapping auctions—and they give rise to ad-
ditional issues. For example, if a seller does not accept a buy bid, some other seller
might.

There are two primary differences between auctions and exchanges with respect
to the design of algorithms. The first is that in addition to the basic question of
what profit threshold to require per sale, for exchanges there is the additional
complication of deciding which bids meeting that criterion one should in fact match
(e.g., maximizing the number of profitable trades is trivial for an auction). So
achieving an optimal competitive ratio will require performing both tasks optimally.
A second more subtle distinction, however, which impacts issues of incentive-
compatibility, concerns the relation between prices and profit. In the context of
auctions, there must exist a fixed sales price that achieves profit within a logarithmic
factor of the optimal offline solution (in fact, the algorithms of Bagchi et al. [2001],
Borodin and El-Yaniv [1998], and El-Yaniv et al. [1992] work by selecting a sales
price from a specific distribution, so clearly the best fixed sales price must be at
least as good). However, for exchanges, there need not exist a fixed pair of buy
and sell prices that achieves a logarithmic, or even sublinear competitive ratio with
respect to the optimum profit. For example, if day i contains a buyer at price i and

2 In subsequent work, Bredin and Parkes [2005] provide a characterization of a wide class of mecha-
nisms that are incentive-compatible with respect to start and end times. However, they do not consider
the competitive ratios of such methods.
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seller at price i + 1, the optimal offline profit in n days is n, but any fixed pair of
prices will produce only one match and so can make at most 1.3 Instead, what we
show must exist in hindsight is a good profit margin per trade, that when combined
with an appropriate matching algorithm, yields a large profit.

The net result of this distinction (between profit margins and a fixed pair of
prices) is a difference between what can be achieved in the pure online model
and what can be achieved by incentive-compatible algorithms when optimizing
for profit. Specifically, on the positive side we give an optimal, ln(pmax − pmin) +
1-competitive, online algorithm for maximizing profit, but which is not incentive-
compatible. On the negative side, we show that in fact no individually rational (it
is in bidders’ interests to participate) incentive-compatible direct mechanism can
achieve a competitive ratio for profit that is sublinear in pmax− pmin, even in the case
of just one buyer and one seller. However, on the positive side again we present an
incentive-compatible algorithm using online learning methods that performs nearly
as well as the best fixed pair of buy and sell prices, so long as traffic is not too bursty.

(In contrast to the linear lower bound on incentive compatible profit maxi-
mization, on the positive side, we show an incentive compatible 2 ln(pmax/pmin)-
competitive algorithm for maximizing social welfare.)

1.3. OBJECTIVES CONSIDERED AND RESULTS. In this article, we consider a
number of objectives. Our goal, for each objective function we consider, will be to
produce online algorithms with optimal competitive ratios. Specifically, we consider
the following goals:

—Maximize Profit. Each pair of buy and sell bids that are matched produces a
profit, which in our basic model is the difference between the buy bid and the
sell bid. The total profit is the sum of these differences, over all matched pairs.
Offline, the matching that optimizes profit can be found via weighted bipar-
tite matching. We present a (randomized) online algorithm with competitive
ratio ln(pmax − pmin) + 1, which we show is the best possible. A simpler al-
gorithm has ratio twice this, and can be used even if expiration times are not
known. These algorithms build on analysis of El-Yaniv et al. [1992] for the
one-way-trading problem. We also show how online learning results [Blum and
Burch 2000; Freund and Schapire 1996; Littlestone and Warmuth 1994] can be
used to produce algorithms with even stronger guarantees—a competitive ratio
approaching 1 with respect to the optimal fixed threshold on profit per trade
(see Section 5.1)—if bids are not too bursty. This idea has been applied by
Bar-Yossef et al. [2002] and Blum et al. [2004] to the simpler context of online
auctions.

In Section 6, we consider the issue of incentive-compatible mechanism design,
where we prove both a negative result and a positive result. On the negative side,
we show no direct, individually rational, incentive-compatible mechanism can

3 In Deshmukh et al. [2002], which studies competitive analysis of exchanges in a 1-shot setting, the
term “competitive” is used to refer to the ratio with respect to the best fixed pair of buy/sell prices
(technically, the best pair that produces at least two trades). That work gives a reduction converting
algorithms for 1-shot auctions that are competitive with respect to the best fixed sales price into
algorithms for 1-shot exchanges that are competitive with respect to the best fixed pair of prices. In
contrast, the issue here is that the relationship between the best fixed price and the overall optimum
solution, while only logarithmic in the context of auctions, becomes linear in the context of exchanges.
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achieve a competitive ratio that is sublinear in pmax − pmin. On the positive side,
however, we give an incentive-compatible algorithm that performs well with
respect to the best fixed pair of buy and sell prices (low additive regret so long
as bids are not too bursty) using online learning techniques.

—Maximize Liquidity. Liquidity maximization is important for a marketplace for
several reasons. The success and reputation of an electronic marketplace is often
measured in terms of liquidity, and this affects the (acquisition) value of the
party that runs the marketplace. Also, liquidity attracts buyers and sellers to the
marketplace; after all, they want to be able to buy and sell.

We analyze three common measures of liquidity: (1) number of trades, (2) sum
of the prices of the cleared buy bids (buy volume), and (3) sum of the prices of
the cleared sell bids (sell volume). Under criterion 1, the goal is to maximize
the number of trades made, rather than the profit, subject to not losing money.
We show that a simple greedy algorithm achieves a factor of 2 competitive ratio,
if no money-losing trades are allowed. This can be viewed as a variant on the
online bipartite matching problem [Karp et al. 1990]. Interestingly, we show that
if the online algorithm is allowed to subsidize matches—match money-losing
pairs if it has already collected enough money from previous pairs to pay for
them—then it can be 1-competitive with respect to the optimal offline algorithm
that is not allowed subsidy. That is, the ability to subsidize is at least as valuable
as knowing the future. (If the offline algorithm can also subsidize, then no finite
competitive ratio is possible).

For the problems of maximizing buy or sell volume, we present algorithms
that achieve a competitive ratio of 2(ln(pmax/pmin) + 1) without subsidization.
We also present algorithms that achieve a competitive ratio of ln(pmax/pmin) + 1
with subsidization with respect to the optimal offline algorithm that cannot use
subsidies. This is the best possible competitive ratio for this setting.

—Maximize Social Welfare. This objective corresponds to maximizing the good of
the buyers and sellers in aggregate. Specifically, the objective is to have the items
end up in the hands of the agents who value them the most. We obtain an optimal
competitive ratio, which is the fixed point of the equation r = ln pmax−pmin

(r−1)pmin
. Using

an incentive-compatible algorithm, we can achieve a competitive ratio at most
twice this.

We develop all of our algorithms in a more general setting we call the incomplete
interval-graph matching problem. In this problem, we have a number of intervals
(bids), some of which overlap in time, but only some of those may actually be
matched (because we can only match a buy to a sell, because the prices must be in
the correct order, etc.). By addressing this more general setting, we are able to then
produce our algorithmic results as corollaries.

1.4. SUBSEQUENT RELATED WORK. There has been substantial work on online
auctions and exchanges subsequent to the initial conference publication of this work;
we mention here just a few closely related results. In the case of digital-good auctions
(a seller with unlimited supply) and buyers who do not linger (ti (v) = t f (v)),
Blum and Hartline [2005] use online learning methods to achieve profit quickly
approaching that of the best series of k sales prices. Hajiaghayi et al. [2004] develop
algorithms for limited-supply auction problems that are incentive-compatible with
respect to both price and timing information, and achieve good performance when



Online Algorithms for Market Clearing 851

bidders’ valuations are drawn independently from a distribution. Hajiaghayi et al.
[2005] consider the case of an auction of reusable goods and characterize the class
of incentive-compatible online allocation rules for this setting, as well as provide
auctions with good competitive ratio bounds. Bredin and Parkes [2005] build on
the work of Hajiaghayi et al. [2005], providing a characterization of a wide class of
mechanisms for online exchanges that are incentive-compatible with respect to both
price and timing information. However, they do not consider the competitive ratios
of such methods. Work has also been done on more complex matching problems
with multiple related commodities [Gong 2002].

2. An Abstraction: Online Incomplete Interval Graphs

In this section, we introduce an abstraction of the temporal bidding problem that
will be useful for producing and analyzing optimal algorithms, and may be useful
for analyzing other online problems as well.

Definition 2.1. An incomplete interval graph is a graph G = (V, E), together
with two functions ti and t f from V to [0, ∞) such that:

(1) For all v ∈ V , ti (v) < t f (v).
(2) If (v, v ′) ∈ E , then ti (v) ≤ t f (v ′) and ti (v ′) ≤ t f (v).

We call ti (v) the start time of v , and t f (v) the expiration time of v . For simplicity,
we assume that for all v �= v ′ ∈ V , ti (v) �= ti (v ′) and t f (v) �= t f (v ′).4

An incomplete interval graph can be thought of as an abstraction of the temporal
bidding problem where we ignore the fact that bids come in two types (buy and
sell) and have prices attached to them, and instead we just imagine a black box “E”
that given two bids v, v ′ that overlap in time, outputs an edge if they are allowed to
be matched. By developing algorithms for this generalization first, we will be able
to more easily solve the true problems of interest.

We now consider two problems on incomplete interval graphs: the online edge-
selection problem and the online vertex-selection problem. In the online edge-
selection problem, the online algorithm maintains a matching M . The algorithm
sees a vertex v at the time it is introduced (i.e., at time ti (v)). At this time, the
algorithm is also told of all edges from v to other vertices which have already been
introduced. The algorithm can select an edge only when both endpoints of the edge
are alive. Once an edge has been selected, it can never be removed. The objective
is to maximize the number of edges in the final matching, |M |.

In the online vertex-selection problem, the online algorithm maintains a set of
vertices W , with the requirement that there must exist some perfect matching on
W . At any point in time, the algorithm can choose two live vertices v and v ′ and
add them into W so long as there exists a perfect matching on W ∪ {v, v ′}. Note
that there need not exist an edge between v and v ′. The objective is to maximize

4 All our results can be extended to settings without this restriction, and where ti (v) may equal
t f (v). This is accomplished by imposing an artificial total order on simultaneous events. Among the
events that occur at any given time, bid introduction events should precede bid expiration events.
The introduction events can be ordered, for example, in the order they were received, and so can the
expiration events.
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the size of W . So, the vertex-selection problem can be thought of as a less stringent
version of the edge-selection problem in that the algorithm only needs to commit
to the endpoints of the edges in its matching, but not the edges themselves.

It is easy to see that no deterministic online algorithm can achieve a competi-
tive ratio less than 2 for the edge-selection problem.5 A simple greedy algorithm
achieves this ratio:

ALGORITHM 1 (GREEDY). When a vertex is introduced, if it can be matched,
match it (to any one of the vertices to which it can be matched).

The fact that Greedy achieves a competitive ratio of 2 is essentially folklore
(e.g., this fact is mentioned in passing for a related model in Karp et al. [1990]).
For completeness, we give the proof here.

THEOREM 2.2. The Greedy algorithm achieves a competitive ratio of 2 for the
edge-selection problem.

PROOF. Consider an edge (v, v ′) in the optimal matching M∗. Define v to be the
vertex which is introduced first, and v ′ to be the vertex which is introduced second.
Then the algorithm will match either v or v ′. In particular, if v is not matched before
v ′ is introduced, then we are guaranteed v ′ will be matched (either to v or some
other vertex). Therefore, the number of vertices in the online matching M is at least
the number of edges in M∗, which means |M | ≥ |M∗|/2.

For the vertex-selection problem, we show the following algorithm achieves a
competitive ratio of 1. That is, it is guaranteed to find (the endpoints of) a maximum
matching in G.

ALGORITHM 2. Let W be the set of vertices selected so far by the algorithm.
When a vertex v is about to expire, consider all the live unmatched vertices v ′,
sorted by expiration time from earliest to latest. Add the first pair {v, v ′} to W such
that there exists a perfect matching on W ∪ {v, v ′}. Otherwise, if no unmatched
vertex v ′ has this property, allow v to expire unmatched.

THEOREM 2.3 (MAIN THEOREM). Algorithm 2 produces a set of nodes having
a perfect matching M which is a maximum matching in G.

The proof of Theorem 2.3 appears in Appendices A and B. The core of the proof
is to show that if W is the set of selected vertices, then at all times the following
invariants hold:

H1: For any expired, unmatched vertex w , there does not exist any untaken vertex
w ′ such that there is a perfect matching on W ∪ {w, w ′}. (An untaken vertex
is a vertex that has been introduced but not matched.)

H2: For any matched vertex w , there does not exist an untaken vertex w ′ such that
there is a perfect matching on W ∪ {w ′} − {w} and t f (w) > t f (w ′).

H3: For any two unexpired vertices w, w ′ ∈ W , there exists no perfect matching
on W − {w, w ′}.

5 Consider the following scenario: vertex u expires first and has edges to v1 and v2. Then, right after
u expires, a new vertex w arrives with an edge to whichever of v1 or v2 the algorithm matched to u.
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The first invariant says that the algorithm is complete: it lets no matchable vertex
expire, and expired vertices do not later become matchable. The second and third
invariants say that the algorithm is cautious. The second invariant says that the
algorithm favors vertices which expire earlier over those which expire later. The
third invariant states that the algorithm only matches vertices that it has to: no subset
of the set of vertices chosen has a perfect matching and contains all of the expired
vertices.6

Since an untaken vertex is a vertex which has been introduced but not matched,
no untaken vertices exist at the start of the algorithm. Also, W is empty. Therefore,
these invariants vacuously hold at the start.

The proof then considers the three types of events that can occur: a vertex can be
introduced, a vertex can expire without being matched, or a vertex can expire and
be added with some other vertex to W . We establish that if all the invariants hold
before any of these events, then they hold afterwards as well. If the first invariant
holds at the termination of the algorithm, then no pair could be added to the set
selected. The augmenting path theorem [Berge 1957] establishes that the selected
set is therefore optimal. See Appendices A and B for a full proof.

3. Competitive Algorithms for Profit, Liquidity, and Welfare

We now show how the results of Section 2 can be used to design optimal algorithms
for the temporal bidding problem for the objectives of maximizing profit, liquidity,
and social welfare. In each case, we construct a graph in which vertices are bids
and edges are placed between a buy bid and a sell bid if they overlap and meet
some additional criteria (such as having a price gap of at least some threshold θ )
that will depend on the specific problem. Note that because bids are intervals, if
Algorithm 2 chooses to add some pair {v, v ′} to its matching, the corresponding
bids will overlap in time, even though there may not be a direct edge between them
in the graph.

3.1. PROFIT MAXIMIZATION. We now return to the temporal bidding problem
and show how the above results can be used to achieve an optimal competitive ratio
for maximizing profit.

We can convert the profit maximization problem to an incomplete interval graph
problem by choosing some θ to be the minimum profit that we will accept to match
a pair. So, when translating from the temporal bidding problem to the incomplete
interval matching problem, we insert an edge between a concurrent buy bid b and
a sell bid s if and only if p(b) ≥ p(s) + θ .

The Greedy algorithm (Algorithm 1) then corresponds to the strategy: “whenever
there exists a pair of bids in the system that would produce a profit at least θ , match
them immediately.” Algorithm 2 attempts to be more sophisticated: first of all, it
waits until a bid is about to expire, and then considers the possible bids to match to
in order of their expiration times. (So, unlike Greedy, this algorithm needs to know
what the expiration times are.) Second, it can choose to match a pair with profit

6 The paraphrasing of this last point is a bit more extreme than the others, but it turns out that if there
exists a perfect matching on W and a perfect matching on W ′ ⊂ W , then there exists two vertices
v, v ′ ∈ W − W ′ such that there is a perfect matching on W − {v, v ′}.
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less than θ if the actual sets of matched buy and sell bids could have been paired
differently in hindsight so as to produce a matching in which each pair yields a
profit of at least θ . This is not too bizarre since the sum of surpluses is just the sum
of buy prices minus the sum of sell prices, and so does not depend on which was
matched to which.

Define M∗(Gθ ) to be the maximum matching in the incomplete interval graph Gθ

produced in the above manner. Then, from Theorem 2.2, the greedy edge-selection
algorithm achieves a profit of at least 1

2θ ·|M∗(Gθ )|. Applying Algorithm 2 achieves
surplus of at least θ · |M∗(Gθ )|.

The final issue is how we choose θ . If we set θ to 1, then the number of matched
pairs will be large, but each one may produce little surplus. If we set θ deterministi-
cally any higher than 1, it is possible the algorithms will miss every pair, and have no
surplus even when the optimal matching has surplus. Instead, one approach is to use
Classify-and-Randomly-Select [Lipton and Tomkins 1994; Awerbuch et al. 1994]:
choose θ = 2i for i chosen at random from {0, 1, . . . , �} for � = �lg(pmax − pmin).
In this case, in expectation a 1/(�+1) fraction of OPT’s profit is from matches made
between bids whose prices differ by an amount in the range [θ, 2θ ], and therefore
the expected value of θ · |M∗(Gθ )| is at least 1

2 OPT/(� + 1). We can achieve a
tighter bound by choosing an exponential distribution as in El-Yaniv et al. [1992]
(see also Goldman et al. [2000]). Specifically, for all x ∈ [1, pmax − pmin], let

Pr[θ ≤ x] = ln(x) + 1

ln(pmax − pmin) + 1
,

where Pr[θ = 1] = 1
ln(pmax−pmin)+1 . Observe that this is a valid probability distribu-

tion. Let OPT be the surplus achieved by the optimal offline algorithm.

LEMMA 3.1. If θ is chosen from the above distribution, then E[θ · |M∗(Gθ )|] ≥
OPT

ln(pmax−pmin)+1 .

COROLLARY 3.2. The algorithm that chooses θ from the above distribution and
then applies Greedy to the resulting graph achieves competitive ratio 2(ln(pmax −
pmin)+1). Replacing Greedy with Algorithm 2 achieves competitive ratio ln(pmax−
pmin) + 1.

In Section 4, we prove a corresponding lower bound of ln(pmax − pmin) + 1 for
this problem.

PROOF (OF LEMMA 3.1). Let us focus on a specific pair (b, s) matched by OPT.
Let Rθ (b, s) = θ if p(b) − p(s) ≥ θ and Rθ (b, s) = 0 otherwise. Observe that
θ · |M∗(Gθ )| ≥ ∑

(b,s)∈OPT Rθ (b, s) because the set of pairs of profit at least θ
matched by OPT is a legal matching in the incomplete interval graph. So, it suffices
to prove that E[Rθ (b, s)] ≥ (p(b) − p(s))/(ln(pmax − pmin) + 1).

We do this as follows. First, for x > 1, d
dx Pr[θ ≤ x] = 1

x(ln(pmax−pmin)+1) . So,

E[Rθ (b, s)] = Pr[θ = 1] +
∫ p(b)−p(s)

1

xdx
x(ln(pmax − pmin) + 1)

= p(b) − p(s)

ln(pmax − pmin) + 1
.
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One somewhat strange feature of Algorithm 2 is that it may recommend matching
a pair of buy and sell bids that actually have negative profit. Since this cannot
possibly improve total profit, we can always just ignore those recommendations
(even though the algorithm will think that we matched them).

3.2. LIQUIDITY MAXIMIZATION. In this section, we study the online maximiza-
tion of the different notions of liquidity: number of trades, aggregate price of cleared
sell bids, and aggregate price of cleared buy bids.

3.2.1. Maximizing the Number of Trades. Suppose that instead of maximizing
profit, our goal is to maximize the number of trades made, subject to the constraint
that each matched pair have non-negative profit. This can directly be mapped into the
incomplete interval graph edge-matching problem by including an edge for every
pair of buy and sell bids that are allowed to be matched together. So, the greedy
algorithm achieves competitive ratio of 2, which is optimal for a deterministic
algorithm, as we prove in Section 4.3.

However, if the online algorithm can subsidize matches (match a pair of buy and
sell bids of negative profit if it has already made enough money to pay for them)
then we can use Algorithm 2, and do as well as the optimal solution in hindsight that
is not allowed subsidization. Specifically, when Algorithm 2 adds a pair {b, s} to W ,
we match b and s together, subsidizing if necessary. We know that we always have
enough money to pay for the subsidized bids because of the property of Algorithm 2
that its set W always has a perfect matching. We are guaranteed to do as well as the
best offline algorithm which is not allowed to subsidize, because the offline solution
is a matching in the incomplete interval graph. Thus, the ability to subsidize is at
least as powerful as knowing the future.7

3.2.2. Maximizing Buy or Sell Volume. A different important notion of liquidity
is the aggregate size of the trades.

Definition 3.3. Given a matching M the buy-volume is
∑

(b,s)∈M p(b). The
sell-volume is

∑
(b,s)∈M p(s).

If we wish to maximize buy volume without subsidization, we can use an algo-
rithm based on the greedy profit algorithm.

ALGORITHM 3. Choose a buy price threshold θ at random. Specifically, for all
x ∈ [pmin, pmax], let

Pr[θ ≤ x] = ln(x) + 1

ln(pmax/pmin) + 1
and let

Pr[θ = 1] = ln(pmin) + 1

ln(pmax/pmin) + 1
.

7If the offline algorithm is also allowed to subsidize money-losing matches, then no finite competitive
ratio is possible. In particular, if the offline algorithm can use knowledge of future profitable matches
to subsidize money-losing matches in the present, then it is clear no interesting competitive ratio can
be achieved; but even if the offline algorithm can only use past profits to subsidize, then the logarithmic
lower bound on profit of Section 4.1 immediately gives a corresponding lower bound for number of
trades.
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When a buy bid b is introduced, if p(b) ≥ θ , and there exists an untaken, unexpired
sell bid that can be matched without subsidy, match them. When a sell bid s is
introduced, if there exists an untaken, unexpired buy bid b such that p(b) ≥ θ and
the bids can be matched without subsidy, match them.

This algorithm achieves a competitive ratio of 2(ln(pmax/pmin) + 1). The proof
follows that of Lemma 3.1. If the online algorithm is allowed to use subsidization,
then we can use Algorithm 2 as follows.

ALGORITHM 4. Choose a buy price threshold θ at random according to the
distribution in Algorithm 3. Convert the online problem into an incomplete interval
graph as follows. For each bid b, insert a vertex with an interval [ti (b), t f (b)]. If a
buy bid b and a sell bid s can be matched without subsidy, and p(b) ≥ θ , add an
edge between their respective vertices.

Run Algorithm 2 on the constructed graph. If Algorithm 2 chooses a buy bid b
and a sell bid s, match them. (If p(b) < p(s), then this match involves a subsidy.)

This achieves a competitive ratio of ln(pmax/pmin) + 1 with respect to the offline
algorithm which does not use subsidy. This is the best ratio that can be achieved
(the proof is by threat-based analysis similar to that in Section 4.1).

Maximizing sell volume is analogous to maximizing buy volume. The best com-
petitive ratio we know without using subsidy is 2(ln(pmax/pmin) + 1). The best
achievable with subsidy against an offline algorithm not allowed to use subsidy is
ln(pmax/pmin) + 1.

3.3. MAXIMIZING SOCIAL WELFARE. Maximizing social welfare means max-
imizing the sum of the valuations of the people who are left with an item, that
is, matched buyers and unmatched sellers. If B ′ is the set of buy bids that were
matched, and S′ is the set of sell bids that were unmatched, then the term that we
wish to maximize is: ∑

b∈B ′
p(b) +

∑
s∈S′

p(s).

Equivalently, if M is our matching, and S is the set of all sell bids, then what we
wish to maximize is: ∑

(b,s)∈M

(p(b) − p(s)) +
∑
s∈S

p(s).

Note that the second term cannot be affected by the algorithm (because we assume
that the bids are predetermined). Furthermore, adding a constant to the offline
and online algorithms’ objective values can only improve the competitive ratio.
Therefore, Corollary 3.2 immediately implies we can achieve a competitive ratio
of ln(pmax − pmin) + 1. However, we can in fact do quite a bit better, using the
following algorithm.

ALGORITHM 5. Let A be a given algorithm for matching on an incomplete
interval graph with competitive ratio 1/α. Let r be the fixed point of the equation:

r = 1

α
ln

pmax − pmin

(r − 1)pmin
(1)
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and let D be the (cumulative) distribution over [r pmin, pmax]:

D(x) = 1

rα
ln

x − pmin

(r − 1)pmin
. (2)

The algorithm is as follows: Draw a threshold T such that Pr[T ≤ x] = D(x), and
construct an incomplete interval graph by adding an edge between any concurrent
pair of buy and sell bids b and s such that p(b) ≥ T and p(s) ≤ T . Then, use
algorithm A to perform the matching.

THEOREM 3.4. Algorithm 5 has competitive ratio r from Equation 1. In par-
ticular, if Algorithm 2 is used as A, then the competitive ratio of Algorithm 5 is the
fixed point of the equation:

r = ln
pmax − pmin

(r − 1)pmin
(3)

Note that this competitive ratio is at most max(2, ln(pmax/pmin)).

THEOREM 3.5. The fixed point of Equation 3 is the optimal competitive ratio.

We prove Theorem 3.5 in Section 4.

PROOF (OF THEOREM 3.4). The technique is similar to Lemma 3.1. First, let us
associate utilities from trades with specific sell bids. Define S to be the set of sell
bids. Fix an optimal matching M∗. Let us define Ropt : S → [pmin, pmax] to be the
valuation of the person who received the item from seller s in the optimal matching.
If s trades with b, then Ropt(s) = p(b). If s does not trade, then Ropt(s) = p(s).
Observe that the optimal welfare is Wopt(s) = ∑

s∈S Ropt(s).
For an arbitrary matching M , let us use the notation Mb,s̄(T ) to indicate the

number of pairs in M where the buy bid is greater than or equal to T and the sell
bid is less than T . Similarly, define Mb,s(T ) to be the number of pairs in M where
the buy bid and sell bid are both greater than or equal to T . Define Ms(T ) to be
the number of unmatched sell bids greater than or equal to T . Recall that α is the
reciprocal of the competitive ratio of the given matching algorithm A, and so is a
lower bound on the fraction of potential trades actually harnessed.

Define N ∗(T ) to be the number of agents (buyers and sellers) that end up with
an item in the optimal matching M∗, and have valuation greater than or equal to T .
So,

N ∗(T ) = |{Ropt(s) ≥ T |s ∈ S}| = M∗
b,s̄(T ) + M∗

b,s(T ) + M∗
s (T ).

Let Malg be a matching obtained by an online algorithm. Define N alg(T ) to be
the number of agents (buyers and sellers) that end up with an item in the matching
Malg, and have valuation greater than or equal to T . Then,

N alg(T ) ≥ αM∗
b,s̄(T ) + M∗

b,s(T ) + M∗
s (T ) ≥ α N ∗(T ).

The social welfare achieved by the algorithm is at least

N alg(T ) T + (|S| − N alg(T ))pmin = (N alg(T ))(T − pmin) + |S|pmin.

Because T>pmin, this is an increasing function of N alg(T ), so the algorithm achieves
social welfare at least

(α N ∗(T ))(T − pmin) + |S|pmin.
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Arithmetic manipulation yields

N ∗(T )[αT + (1 − α)pmin] + (|S| − N ∗(T ))pmin.

By substitution, we get

|{Ropt(s) ≥ T |s ∈ S}|[αT + (1 − α)pmin] + |{Ropt(s) < T |s ∈ S}|pmin.

By defining RT (s) = αT + (1 − α)pmin when Ropt(s) ≥ T and RT (s) = pmin oth-
erwise, the algorithm is guaranteed to achieve social welfare of at least �s∈S RT (s).
We have divided the social welfare on a per sell bid basis. Therefore, if T is drawn
according to D(x), we want to prove that E[RT (s)] ≥ Ropt(s)

r for all s, and the

problem is solved. If Ropt(s) ≤ r pmin, then E[RT (s)] ≥ pmin ≥ Ropt(s)
r . Consider the

case where Ropt(s) > r pmin. If T is drawn according to D(x), then since the density
of T is D′(x) = 1

rα(x−pmin) between r pmin and pmax and zero elsewhere:

E[RT (s)] = pmin(1 − D(Ropt(s)) +
∫ Ropt(s)

x=r pmin

(αx + (1 − α)pmin)(D′(x))dx

= pmin +
∫ Ropt(s)

x=r pmin

(αx − αpmin)D′(x)dx

= pmin +
∫ Ropt(s)

x=r pmin

1

r
dx

= Ropt(s)

r
.

Thus, for each sell bid s, E[RT (s)] ≥ Ropt(s)/r , establishing the result.

4. Lower Bounds on Competitive Ratios

In this section, we establish that our analysis is tight for these algorithms. Specif-
ically, we show that no algorithm can achieve a competitive ratio lower than
ln(pmax − pmin) + 1 for the profit maximization problem, no algorithm can achieve
competitive ratio lower than the fixed point of r = ln pmax−pmin

(r−1)pmin
for social welfare,

and no deterministic algorithm can achieve a competitive ratio better than 2 for the
trade volume maximization problem without subsidization. We also show that no
randomized algorithm can achieve a competitive ratio better than 4/3 for the trade
volume maximization problem without subsidization, though we believe this is a
loose bound. Furthermore, on this problem it is impossible to achieve a competitive
ratio better than 3/2 without taking into consideration the expiration times of the
bids. Also, we prove that our greedy profit-maximizing algorithm does not achieve
a competitive ratio better than 2(ln(pmax − pmin) + 1) (i.e., our analysis of this
algorithm is tight).

4.1. A THREAT-BASED LOWER BOUND FOR PROFIT MAXIMIZATION. In this anal-
ysis, we prove a lower bound for the competitive ratio of any online algorithm for
profit maximization by looking at a specific set of temporal bidding problems. We
prove that even if the algorithm knows that the problem is in this set, it cannot
achieve a competitive ratio better than ln(pmax − pmin) + 1. This is very similar to
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the analysis of the continuous version of the one-way trading problem in El-Yaniv
et al. [1992].

For this analysis, assume pmin = 0. Consider the situation where you have a
single sell bid at price 0 that lasts forever. First, there is a buy bid at price a, and
then a continuous stream of increasing buy bids with each new one being introduced
after the previous one has expired. The last bid occurs at some value y. Define D(x)
to be the probability that the sell bid has not been matched before the bid of x dollars
expires. Since it is possible there is only one buy bid, if one wanted to achieve a
competitive ratio of r , then D(a) ≤ 1 − 1

r . Also, define Y (y) to be the expected
profit of the algorithm. The ratio r is achieved if for all x ∈ [a, pmax], Y (x) ≥
x/r . Observe that Y ′(x) = −D′(x)x , because −D′(x) is the probability density
at x .

Observe that one wants to use no more probability mass on a bid than absolutely
necessary to achieve the competitive ratio of r , because that probability mass is
better used on later bids if they exist. Therefore, for an optimal algorithm, D(a) =
1− 1

r , and Y (x) = x/r . Taking the derivative of the latter, Y ′(x) = 1/r . Substituting,
1/r = −D′(x)x . Manipulating, D′(x) = − 1

r x . Integrating:

D(y) = D(a) +
∫ y

a
D′(x)dx

= 1 − 1

r
− 1

r
ln

∣∣∣ y
a

∣∣∣
For the optimal case, we want to just run out of probability mass as y approaches
pmax. Therefore:

D(pmax) = 1 − 1

r
− 1

r
ln

∣∣∣ pmax

a

∣∣∣ = 0

r = ln
pmax

a
+ 1

Thus, setting a to 1, and shifting back by pmin, one gets a lower bound of ln(pmax−
pmin) + 1.

4.2. GREEDY PROFIT MAXIMIZATION. The following scenario shows that our
analysis of the greedy profit algorithm is tight. Imagine that a buy bid for $2 is
introduced at 1:00 (and is good forever), and a sell bid for $1 is introduced at 1:01
(that is also good forever). At 2:00, another buy bid for $2 is introduced, which
expires at 3:00. At 3:01, another sell-bid for $1 is introduced. In this scenario, the
optimal offline algorithm achieves a profit of $2 (matching the first buy bid to the
last sell bid, and the last buy bid to the first sell bid).

With a probability of 1 − 1
ln(pmax−pmin)+1 , θ > 1, and the greedy algorithm ignores

all of the bids. Otherwise (θ = 1), the greedy algorithm matches the first two bids
for a profit of 1 and then cannot match the second two. Therefore, the expected
reward is 1

ln(pmax−pmin)+1 compared to an optimal of 2.

4.3. LOWER BOUND FOR MAXIMIZING THE NUMBER OF TRADES. Here we es-
tablish that no deterministic algorithm can achieve a competitive ratio lower than 2
for maximizing the number of trades without subsidization. Also, no randomized
algorithm can achieve a competitive ratio lower than 4/3. Furthermore, without
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observing the expiration times, it is impossible to achieve a competitive ratio less
than 3/2.

Imagine a sell bid s∗ for $1 is introduced at 1:00 and will expire at 2:00. At 1:01,
a buy bid b is introduced for $3, and will expire at 3:00. At 1:02, a buy bid b′ is
introduced for $2, and will expire at 4:00.

Now imagine there are two possible sell bids that can be introduced: either a sell
bid s for $2.50 at 2:30, or a sell bid s ′ for $1.50 at 3:30. Observe that b can match
s, and b′ can match s ′. So if s is to appear, s∗ should match b′, and if s ′ is to appear,
s∗ should match b. But when s∗ expires, the online algorithm does not know which
one of s and s ′ will appear. So while a randomized algorithm can guess the correct
match to make with a probability of 1/2, the deterministic algorithm must make a
decision of which to take before the adversary chooses the example, and so it will
choose the wrong match.

Without observing the expiration times, it is impossible achieve a competitive
ratio below 3/2. Imagine that a sell bid is introduced at 9:00 AM for $1, and a buy
bid is introduced at 9:00 AM for $2. The algorithm must then decide whether these
bids should be matched. Suppose an algorithm A matches them with probability p
by 10:00 AM. If p ≤ 2/3, then they expire at 10:00 AM and no other bids are seen
and the expected reward is less than 2/3 when it could have been 1. If p > 2/3,
then the bids last all day. Moreover, there is another buy bid from 1:00 PM to 2:00
PM for $2 and another sell bid from 3:00 PM to 4:00 PM for $1. If the first two
bids were unmatched, then one could achieve a profit of 2 whereas the expected
reward of the algorithm is (1)p + 2(1 − p) ≤ 4/3. Therefore, no algorithm has a
competitive ratio better than 3/2 on these two examples.

4.4. LOWER BOUND FOR MAXIMIZING SOCIAL WELFARE. Maximizing social
welfare is a generalization of the continuous one-way trading problem [El-Yaniv
et al. 1992]. In particular, imagine that one seller has value pmin for the item, and
is alive from time 0 onward. If at time t the exchange rate is x , then there is a buy
bid that is alive only at time t and has a price p(b) = x . Making a trade is the same
as converting the currency. Leaving the seller with the good is the same as trading
on the last day at the lowest possible price. Therefore, since the competitive ratio
in El-Yaniv et al. [1992] is equal to the competitive ratio in Theorem 3.4, it is the
case that Thereom 3.5 holds.

5. Extensions

In this section, we discuss two natural extensions to the basic model.

5.1. PROFIT MAXIMIZATION REVISITED: PERFORMING NEARLY AS WELL AS THE
BEST THRESHOLD IN HINDSIGHT. The algorithm of Corollary 3.2 begins by pick-
ing a threshold θ from some distribution. It turns out that under certain reasonable
assumptions described below, we can use online learning results to perform within
a (1 + ε) factor of the best value of θ picked in hindsight, minus an additive term
linear in 1/ε. This does not violate the optimality of the original algorithm: it could
be that all thresholds perform a logarithmic factor worse than OPT. However, one
can imagine that in certain natural settings, the best strategy would be to pick some
fixed threshold, and in these cases, the modified strategy would be within a (1 + ε)
factor of optimal.
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The basic idea of this approach is to probabilistically combine all the fixed-
threshold strategies using the Randomized Weighted Majority algorithm (also called
Exponential-Weighting, or Hedge) of Littlestone and Warmuth [1994] and Freund
and Schapire [1996], as adapted by Blum and Burch [2000] for the case of experts
with internal state. In particular, at any point in time, for each threshold θ , we
can calculate how well we would have done had we used this threshold since the
beginning of time as a pair (profitθ , stateθ ), where profitθ is the profit achieved so
far, and stateθ is the set of its current outstanding bids. For example, we might find
that had we used a threshold of 5, we would have made $10 and currently have
unmatched live bids {b1, b2, s1}. On the other hand, had we used a threshold of 1,
we would have made $14 but currently have no live unmatched bids.

In order to apply the approach of Blum and Burch [2000], we need to be able to
view the states as points in a metric space of some bounded diameter D. That is,
we need to imagine our algorithm can move from stateθ1 to stateθ2 at some cost
d(stateθ1, stateθ2 ) ≤ D. To do this, we make the following assumption:

ASSUMPTION 1. There is some a priori upper bound B on the number of bids
alive at any one time.

We now claim that under this assumption we can view the states as belonging
to a metric space of diameter D ≤ B(pmax − pmin). Specifically, suppose we are
currently following some base-algorithm of threshold θ . Let us define a potential
function equal to the number of bids in the state stateθ of the algorithm we are
currently following, but that are not actually in our state (we do not actually have
available to us as live bids) because we already matched them at some point in the
past. Note that by Assumption 1, this potential function is bounded between 0 and
B. Now, suppose the algorithm we are following tells us to match a given pair of
bids. If we do not have both of them in our current state, then we simply do not
perform a match: this causes us to possibly make pmax − pmin less profit than that
algorithm, but decreases our potential by at least 1. Since we never match a pair
of bids unless told to by our current base-algorithm, this potential cannot increase
while we are following it (to be clear, even if our current state has two bids that
differ in price by more than θ , we do not match them unless our base-algorithm
tells us to). Now, if the overall “master” algorithm tells us to switch from threshold
θ to some other threshold θ ′, the potential can increase by at most B. Therefore,
our overall total profit is at most B(pmax − pmin) less per switch than what our profit
should be according to the master algorithm.

We can now plug in the Randomized Weighted-Majority (Hedge) algorithm,
using the fact that there are at most N = pmax − pmin possible different thresholds
to use, to get the following theorem.

THEOREM 5.1. Under the assumption above, for any ε > 0 (ε is given to the
algorithm), we can achieve an expected gain at least

max
θ

[
(1 − ε)profitθ − 2B(pmax − pmin)

ε
ln(pmax − pmin)

]
,

where profitθ is the profit of the algorithm of Corollary 3.2 using threshold θ .

The proof follows the exact same lines as Blum and Burch [2000] (which builds
on Littlestone and Warmuth [1994] and Freund and Schapire [1996]). Technically,
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the analysis of Blum and Burch [2000] is given in terms of losses rather than gains
(the goal is to have an expected loss only slightly worse than the loss of the best
expert). For completeness, we give the proof of Theorem 5.1 from first principles
in Appendix C.

5.2. MORE GENERAL BIDDING LANGUAGES. So far, in this article, we have
required bidders to submit bids in a somewhat restrictive form: a fixed price for
some interval of time. We now consider a model in which each bid can be an
arbitrary function from time to price. For instance, a buyer might want to put in
a bid for $100 at time t1, and then if that bid has not been matched by time t2 to
raise it to $120, or perhaps to slowly raise it according to some schedule until time
t3 at which point if not yet matched the buyer gives up (setting his price to $0).
We assume the online algorithm only gets to observe the past history of the bid
function, and that if a bidder is matched then his bid function is truncated and no
longer observable. Our goal is to compete against the offline optimal for the entire
bid functions. For instance, in the above example, an online algorithm might match
the buyer at price $100, and the offline optimal might involve waiting until the price
reached $120, even though the online algorithm never got to see the $120 bid price.
Thus, in this setting, even the online algorithm cannot necessarily compute what
would have been the offline optimal in hindsight.

We show that a competitive ratio of 2(ln(pmax− pmin)+1) for profit maximization
can still be achieved in this setting by using the Greedy algorithm described earlier
in this article.

The nature of the online graph is different in this model. We can still represent
the bids as vertices and the matches as edges. If there is a single agent interested in
a single unit, only one vertex will be used to represent the agent’s bidding function.
This will guarantee that the agent does not buy or sell more than one item. If there is,
at some time, a buy bid at price b(t) and a sell bid at price s(t) for b(t) ≥ s(t) + θ ,
then an edge from b to s is inserted into the graph. Note that two vertices may
enter without having an edge, and at a later time an edge may appear between
them.

The algorithm remains the same: we choose a random profit threshold θ accord-
ing to the same distribution as before and only include edges representing trades
that achieve profit level at least θ . The algorithm selects from the edges greedily
as they appear. This is still guaranteed to get a matching at least half as large as
optimal. To see this, observe that at least one vertex from every edge in the optimal
matching is selected by the algorithm. When an edge arrives, either one of the ver-
tices has already been taken, or both are free. If both are free, they will be matched
to each other, or at least one of them will be matched to another edge that happened
to be introduced simultaneously. Thus, after an edge is introduced, at least one of
its vertices has been selected.

This technique also works for maximizing liquidity. However, maximizing social
welfare in this setting is a bit trickier. One problem is that it is not totally clear how
social welfare should be defined when the bids of the participants change with
time. If only the buyers’ bids change with time, then one natural definition of social
welfare for a matching M is ∑

b∈B ′
pM (b) +

∑
s∈S′

p(s),
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where B ′ is the set of matched buy bids, S′ is the set of unmatched sell bids, and
pM (b) is the value of b’s bid at the time the match was made. In that case, the
Greedy algorithm still achieves its near-optimal competitive ratio. This is perhaps
surprising since the online algorithm is at an extra disadvantage, in that even if it
magically knew which buyers and sellers to match, it still would need to decide
exactly when to make those matches in order to maximize social welfare.

6. Strategic Agents

Up until this point of the article, we have considered the standard competitive
analysis model in which we compare performance of an online algorithm to the
optimal offline solution for the same sequence of bids (or bidding functions). We
now switch to a model in which each bidder instead has a private valuation for the
item, and we are competing against the offline optimal for those valuations (i.e.,
the optimal had we known the true valuations and time-intervals in advance). In
particular, this means that if we want bidders to actually bid their true valuations,
then our mechanism must be (dominant-strategy) incentive-compatible. That is, no
matter how other bidders behave, it should be in a bidder’s best interest to report
truthfully.

In this setting, we show the following results. For social welfare maximiza-
tion, we present an incentive-compatible algorithm with competitive ratio at
most 2 max(ln(pmax/pmin), 2). For profit maximization we present a lower-bound,
showing that no incentive-compatible, individually rational direct mechanism can
achieve a competitive ratio sublinear in pmax − pmin, even when only two bids
are alive at any point in time. (This lower bound actually holds even if incentive
compatibility and individual rationality are only required in expectation over other
agents’ actions.) We then complement this with two algorithmic results: a very
simple incentive-compatible algorithm with competitive ratio pmax − pmin, and a
more sophisticated algorithm with a ratio of 1 + ε (plus an additive loss term)
with respect to the best fixed pair of buy and sell prices, when bids are not too
bursty. For these latter results we assume that the start and end times of bids are
not manipulable—the only control a bidder has is over his bid value.

6.1. AN INCENTIVE-COMPATIBLE MECHANISM FOR MAXIMIZING SOCIAL
WELFARE. We design an algorithm that is incentive-compatible in dominant strate-
gies for maximizing social welfare. That is, each agent’s best strategy is to bid
truthfully regardless of how others bid. Bidding truthfully means revealing one’s
true valuation.

We assume that each bidder wants to buy or sell exactly one item. We also
assume that there is one window of time for each agent during which the agent’s
valuation is valid, and that inside the window this valuation is constant (outside this
window, a seller’s valuation is infinite, and a buyer’s valuation is negative infinity).
For example, the window for a seller might begin when the seller acquires the item,
and ends when the seller no longer has storage space. A buyer’s window might
begin when the buyer acquires the space to store the item. Finally, we assume
bidders are identifiable and therefore we can restrict each to making at most one
bid.

Let us first consider a simpler setting with no temporal aspects. That is, everyone
makes bids upfront to buy or sell the item. In our mechanism, we first decide a
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price T at which all trades will occur, if at all. We then examine the bids and only
consider sell bids below T and buy bids above T . If there are more sell bids than
buy bids, then for each buy bid, we select a random seller with a valid bid to match
it to. We do the reverse if there are more buy bids than sell bids.

Now, there are three factors that affect the expected reward of an agent:

(1) The agent’s valuation for the item. This is fixed before the mechanism begins,
and cannot be modified by changing the strategy.

(2) The price of a possible exchange. This is set upfront, and cannot be modified
by changing the strategy.

(3) The probability that the agent is involved in an exchange.

The last factor is the only one that the agent has control over. For a buyer,
if its valuation is below the price of an exchange, then the buyer does not wish
to exchange, and can submit one bid at its true valuation, and it will have zero
probability of being matched.

The more interesting case is when the agent’s valuation is above the trading price.
Now, the agent wishes to maximize the probability of getting to trade. If the other
agents submit at least one fewer buy bid above T than the number of sell bids below
T , then the agent is guaranteed a trade. On the other hand, if there are as many or
more buy bids than sell bids, then the agent would not be guaranteed to purchase
an item. Regardless of what bid the buyer submits above T , it will only have as
much of a chance as any other buyer. So, the buyer loses nothing by submitting a
bid at its true valuation.

A similar argument applies to sellers. Therefore, all of the agents are motivated to
bid truthfully.8 An important aspect of this is that the trading price does not depend
on the bids.

Now, let us apply this technique to the online problem.

ALGORITHM 6. Define A to be a greedy algorithm that matches incoming bids
uniformly at random to existing bids. Run Algorithm 5 with algorithm A.

Under this algorithm, each agent is motivated to bid its true price. Furthermore,
no agent can benefit from only bidding for a fraction of its window.

This algorithm is an instance of our Greedy algorithm, because it always matches
two bids when it can. For each pair in the optimal matching (where the buy bid is
above the price threshold and sell bid is below the threshold), the above algorithm
will select at least one bid. If the first bid introduced is not there when the second
bid arrives, then it was matched. If the first bid still remains when the second bid
arrives, then (since either all buy bids or all sell bids are selected), one bid or the
other bid is selected from the pair. This implies that our competitive ratio for the
Greedy social welfare maximizing algorithm applies.

6.2. INCENTIVE-COMPATIBILITY FOR PROFIT MAXIMIZATION. As mentioned in
the introduction (Section 1.2), the landscape of what can be achieved via incentive-
compatible mechanisms for profit maximization is more complicated for exchanges

8 This scheme is vulnerable to coalitions: if for a buyer b and a seller s, p(b) > p(s) > T , then b has
a motivation to pay s to decrease his offered price to below T , such that b can receive the item. If we
assume there are no side payments, such problems do not occur.
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than for 1-sided auctions. The key issue is perhaps best understood by considering
the following three classes of offline competitor algorithms, from strongest to
weakest:

(1) The optimal algorithm that knows all bids in advance and can produce any legal
matching {b1, s1), . . . , (bn, sn)}, extracting full profit from them

∑
i (bi − si ).

This is what we have meant throughout this article by the offline optimal solution
OPT, and our algorithm of Section 3.1 achieved an optimal ln(pmax − pmin)+1
competitive ratio with respect to this “gold standard”.

(2) The optimal fixed profit threshold. This is the optimal algorithm that picks
some profit threshold (“markup”) θ and can then produce any legal matching
{(b1, s1), . . . , (bn, sn)} such that bi − si ≥ θ , making θ profit per trade. The
analysis of Section 3.1 implies that the optimal fixed profit threshold is at most
a ln(pmax − pmin) + 1 factor worse than OPT, and our algorithm of Section
5.1 performs within a 1 + ε factor of the optimal fixed profit threshold under
Assumption 1 (bids are not too bursty).

(3) The optimal fixed pair of prices. This is the optimal algorithm that picks two
thresholds θb and θs , and can produce any legal matching {(b1, s1), . . . , (bn, sn)}
such that bi ≥ θb and si ≤ θs for all i , making θb−θs profit per trade. As pointed
out by the example in Section 1.2, the optimal fixed pair of prices can be much
worse, by a pmax − pmin factor, than OPT or even the optimal fixed profit
threshold.

In the case of 1-sided auctions, the second two benchmarks above collapse, and
for that reason it is possible to be incentive-compatible and have a logarithmic
competitive ratio. In contrast, we show for exchanges that no individually-rational
(it is in bidders’ interests to participate) incentive-compatible direct mechanism for
exchanges can achieve a competitive ratio sublinear in pmax − pmin. It is easy to
achieve a linear ratio by choosing a pair of buy and sell prices from an appropriate
distribution (see Section 6.2.1 below), so this is tight. In addition, we give an
algorithm using online learning methods that performs nearly as well as the best
fixed pair of buy and sell prices (benchmark (3) above), so long as traffic is not
too bursty. We begin with the positive algorithmic results, and then give the lower
bound, followed by a discussion of some related issues.

In this section, we assume a somewhat more restrictive model than in Section
6.1. In particular, we assume that bidders’ start and end times are not manipulable,
and the only control a bidder has is over his bid value.

6.2.1. Positive Results for Profit I: Achieving a Linear Ratio. We begin with a
very simple incentive-compatible algorithm that achieves a linear competitive ratio
for maximizing profit.

THEOREM 6.1. Suppose we create an incomplete interval graph by using
thresholds θs = j and θb = j +1 (placing an edge between b and s if p(b) ≥ θb and
p(s) ≤ θs) for j chosen uniformly at random from {pmin, pmin + 1, . . . , pmax − 1}.
We then run Algorithm 2, making $1 per match by buying from the seller at θs and
selling to the buyer at θb. Then, this algorithm achieves an expected profit at least
OPT/(pmax − pmin).

PROOF. Consider the offline optimal matching {(b1, s1), . . . , (bn, sn)}, with its
profit OPT = ∑

i (bi − si ). We can rewrite this sum (pictorially, considering it
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“horizontally” instead of “vertically”) as

OPT =
pmax−1∑
j=pmin

|{i : si ≤ j and bi ≥ j + 1}|.

Therefore, if we pick j at random from {pmin, pmin + 1, . . . , pmax − 1} and choose
θs = j , and θb = j + 1, the expected profit of this matching using those posted
prices is OPT/(pmax − pmin). Therefore, the expected profit of Algorithm 2 using
these posted prices is at least as large.

6.2.2. Positive Results for Profit II: Competing with the Best Pair of Prices.
We now show how online learning methods can be used to develop an incentive-
compatible algorithm for profit maximization that performs nearly as well as the
best fixed pair of buy/sell prices in hindsight, when the sequence of bids is not too
bursty. In particular, we make the same assumption used in Section 5.1 (Assumption
1) that at most B bids are alive at any one time, and in addition we assume that
all events happen at integral time steps. Our conclusion, however, will be weaker
in that our additive term will grow, sublinearly, with time (though we show how
to remove this with the additional assumption that all bids have at most constant
length). Specifically, if we define OPTfixedpair to be the optimal profit achievable by
posting some fixed pair (θb, θs) of buy and sell prices, and matching bids that come
in on their respective sides of these prices, making θb − θs profit per trade, then
we achieve a profit of OPTfixedpair − O(BT 2/3(pmax − pmin) log1/3(pmax − pmin)).
Thus, for our conclusion to be non-vacuous, we need that OPTfixedpair grows at least
at the rate of T 2/3. For example, if the optimal fixed-price profit grows linearly
with time (a natural assumption in any reasonably-stationary market), then our
competitive ratio with respect to the best fixed pair of prices approaches 1. In game-
theoretic terminology, our algorithm has sublinear additive regret with respect to
this comparison class.

The algorithm is similar to that used in Section 5.1, in that we will switch between
base-algorithms using a probability distribution given by an online learning method.
However, there are two primary differences:

(1) We will need to use base-algorithms (experts) that themselves are incentive-
compatible. In particular, the base-algorithms we combine will each be of
the same type as OPTfixedpair: each is defined by a pair (θb, θs) of posted
buy and sell prices, and will match pairs (b, s) such that p(b) ≥ θb and
p(s) ≤ θs using Algorithm 2, making θb − θs profit per trade (buying from
the seller at θs and selling to the buyer at θb). Since our model allows bid-
ders control only over their prices (and not start/end times), these algorithms
are incentive-compatible. In particular, Algorithm 2 does not use the ac-
tual bid values to determine which matches to make, only the start and end
times.

(2) We need to ensure that our method of combining base-algorithms retains in-
centive compatibility. Note that it is not enough to ensure that only expired bids
influence our decision to switch between base-algorithms, since a bidder may
decide to bid more aggressively than his true valuation in the hope that some
other bidders will cause variation in our prices. In fact we will address this
issue through a somewhat draconian method: we define in advance a sequence
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of points in time t0, t1, t2, . . . such that switches can occur only at those times,
and throw out any bid whose time-interval contains any of those ti .

Note that one nice feature of the draconian method used in (2) above is that, after
accounting for lost profit due to bids thrown out, there are no longer any costs
for switching between base-algorithms, as we had in Section 5.1. However, the
penalty for this is an additive term that grows with time due to the presence of the
ti : for example, if every bid overlapped some ti , then our algorithm would make no
profit at all (on the other hand, the ti will be spaced out farther and farther apart,
so this can only happen if the rate of increase in OPTfixedpair with time drops to
zero.

THEOREM 6.2. There is an incentive-compatible algorithm for profit maximiza-
tion such that in T time steps,

E[profit] ≥ OPTfixedpair − O
(
B(pmax − pmin)T 2/3 log1/3(pmax − pmin)

)
under the assumption that at most B bids can be alive at any point in time and all
bid intervals have integral endpoints.

PROOF. The algorithm is as follows: For simplicity, we assume we are given
up front the number of time steps T that our exchange will be active, though this
assumption can easily be removed by guessing a value and then doubling it when
that guess is exceeded as in Cesa-Bianchi et al. [1997]. We now break up the T
time steps into s time segments of length T/s each, so that ti = iT/s. By the
assumption that at most B bids can be alive at any one time, the maximum possible
gain in a single time segment is M = B(pmax − pmin)T/s. We now run the standard
Randomized Weighted Majority algorithm with N = (pmax − pmin)2 experts, each
as defined in item (1) above, having one expert for every possible pair of buy
and sell thresholds. We view the entire interval [ti−1, ti ] as the i th trial, with each
expert’s gain per trial bounded in [0, M]. Note that due to ignoring bids that cross
a time-interval, OPTfixedpair may be larger than the gain of the best expert by up to
B(pmax − pmin)s. Putting this all together, for any ε > 0 given as a parameter to the
learning algorithm, by [Littlestone and Warmuth 1994; Freund and Schapire 1996]
we can achieve a total expected gain at least:

(1−ε)(OPTfixedpair − B(pmax − pmin)s)− O
(

1

ε

T
s

B(pmax − pmin) log(pmax − pmin)

)

≥ OPTfixedpair − O
((

εT − s − 1

ε

T
s

log(pmax − pmin)
)

B(pmax − pmin)

)
.

Now, plugging in s = T 2/3 log1/3(pmax − pmin) and ε = T −1/3 log1/3(pmax − pmin),
we get

E[online profit] ≥ OPTfixedpair − O
(
B(pmax − pmin)T 2/3 log1/3(pmax − pmin)

)
as desired.

The above result requires an additive term that increases with time. If we make
the additional assumption that all bid intervals have some maximum length �,
we can remove this dependence on time and replace it with a dependence on �.
Specifically, rather than have each time segment be a fixed length T/s as in the above
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algorithm, we can choose each segment to be a random length chosen uniformly
from [2�/ε, 4�/ε]. Notice that for any pair of overlapping bids (of total length at
most 2�) there is at most an ε chance that either bid intersects an interval boundary.
Thus, in expectation, at most an ε fraction of the profit of OPTfixedpair is lost due to
throwing out such bids, and so applying the same weighted-majority bounds used
above we achieve an expected gain at least:

(1 − ε)2OPTfixedpair − O
(

1

ε

�

ε
B(pmax − pmin) log(pmax − pmin)

)
.

Dividing ε by 2, we therefore have the following:

THEOREM 6.3. There is an incentive-compatible algorithm for profit maximiza-
tion such that for any given ε ∈ (0, 1),

E[profit] ≥ (1 − ε)OPTfixedpair − O
(

�B(pmax − pmin)

ε2
log(pmax − pmin)

)
,

under the assumption that at most B bids can be alive at any point in time and all
bid intervals have length at most �.

6.2.3. Negative Results for Maximizing Profit. In this section, we prove that no
incentive compatible, individually rational, direct mechanism can obtain a compet-
itive ratio for profit that is sublinear in pmax − pmin. Furthermore, this holds even in
the case where there is just one buy bid and one sell bid, both introduced at time 0
and both expiring at time 1. This lower-bound can then be extended to cases with
arbitrarily-large values of OPT, by repeating it over time (with bids extending from
time 2 to time 3, time 4 to time 5, etc.), so it is not just an issue of an additive
constant.

Myerson and Satterthwaite [1983] find an optimal mechanism for maximizing
the broker’s revenue in a 1-buyer 1-seller setting when the valuation distributions
are common knowledge. Many of the techniques they use are applicable here, but
we will apply them for understanding how much utility a broker can obtain if the
distributions are unknown.

Definition 6.4. In general, a mechanism is an incentive compatible, individu-
ally rational, direct mechanism if:

(1) Direct. The agents communicate their types (i.e., value of the item, introduction
and expiration time) to the mechanism.

(2) Incentive Compatible. Each agent is motivated to reveal her true type: that is,
she cannot increase her expected utility by stating any other type, assuming the
other agents reveal their true types. (This form of incentive compatibility, aka
Bayes-Nash incentive compatibility, is a weaker requirement than the dominant-
strategy incentive compatibility used elsewhere in this article. This makes the
impossibility result below stronger.)

(3) Individually Rational. Each agent is motivated to participate in the mechanism:
that is, averaged over the other agents’ true types, her expected utility is non-
negative. (This form of individually rationality is a weaker requirement than
elsewhere in this article, where we required that an agent is best off participating
for sure. This makes the impossibility result below stronger.)
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THEOREM 6.5. It is not possible to achieve a competitive ratio less than �pmax+1
3

with a direct, incentive-compatible, individually rational mechanism for maximiz-
ing profit, even with a single buyer and single seller with public introduction and
expiration times.

Incentive compatibility and individual rationality are difficult to characterize in
general in this domain. However, we will simplify matters by considering the case
that there is a single buy bid and a single sell bid, both introduced at time 0 and
expiring at time 1. Moreover, we will also focus on the case where the buyer and
the seller know each other’s value. We then compare ourselves to the broker who
knows the value of the buyer and the seller.

Formally, we can now define a mechanism with three functions:

(1) p(θ1, θ2), the probability of a trade if the seller reveals type θ1 and the buyer
reveals type θ2,

(2) x1(θ1, θ2), the expected amount paid to the seller, and
(3) x2(θ1, θ2), the expected amount charged to the buyer.

Observe that x1(θ1, θ2) is not defined as the expected amount given to the seller
conditional on a trade being made, but the expected amount conditional on the
buyer being type θ1 and the seller being type θ2. Similarly, x2(θ1, θ2) is the expected
amount charged the buyer given only θ1 and θ2.

We can now specify what it means to be incentive compatible and individually
rational for one buyer and one seller given x1, x2, and p. To make the statements
clearer, define

U1(θ1, θ2) = x1(θ1, θ2) − θ1 p(θ1, θ2), U2(θ1, θ2) = θ2 p(θ1, θ2) − x2(θ1, θ2) (4)

to be the expected utility of the seller and buyer, respectively, given that their
respective types are θ1 and θ2 and that both agents reveal their types truthfully.

(1) The mechanism is incentive compatible if for all θ1, θ2, θ
′
1, θ

′
2 ∈ [pmin, pmax]:

U1(θ1, θ2) ≥ x1(θ ′
1, θ2) − θ1 p(θ ′

1, θ2), U2(θ1, θ2) ≥ θ2 p(θ1, θ
′
2) − x2(θ1, θ

′
2).
(5)

(2) The mechanism is individually rational if for all θ1, θ2 ∈ [pmin, pmax]:
U1(θ1, θ2) ≥ 0, U2(θ1, θ2) ≥ 0. (6)

Finally, the expected profit of the broker is:

U0(θ1, θ2) = x2(θ1, θ2) − x1(θ1, θ2)
= (θ2 − θ1)p(θ1, θ2) − U2(θ1, θ2) − U1(θ1, θ2) (7)

THEOREM 6.6. If an online direct mechanism is incentive compatible, then for
all θ1,θ2, p(θ1, θ2) is weakly decreasing in θ1 and weakly increasing in θ2, and:

U1(θ1, θ2) = U1(pmax, θ2) +
∫ pmax

θ1

p(s1, θ2)ds1, U2(θ1, θ2) = U2(θ1, 0)

+
∫ θ2

pmin

p(θ1, s2)ds2.

The proof of Theorem 6.6 follows quite closely the beginning of Theorem 1
of Hagerty and Rogerson [1987] who prove a similar result for budget-balanced
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auctions. As is shown by Myerson and Satterthwaite [1983], extending such a result
beyond the budget-balanced case is not hard. See Chapter 3 of Zinkevich [2004]
for a full version of the proof.

Without loss of generality, assume pmin = 0. Define n = �pmax (or more
generally, �pmax − pmin). Consider the n pairs of types for the seller and the buyer,
{(0, 1), (1, 2), . . . , (n − 1, n)}. Observe that the optimal broker achieves a value of
1 in any of these scenarios. If p is the probability of trade for the online algorithm,
define

p1 = min
i∈{1...n}

p(i − 1, i).

Notice that by Eq. (7), the competitive ratio of the online algorithm can be no more
than 1

p1
if it satisfies individual rationality. We now show a recursive bound that

gives an upper bound on p1.

LEMMA 6.7. Define p� such that:

p� = min
i∈{�...n}

p(i − �, i).

If the mechanism has a finite competitive ratio then for all � > 1, p� ≥ �+1
3 p1.

PROOF. Define

p∗
� =

{
p1 if � = 1
�+1

3 p1 otherwise.

We now argue by induction. Assume that the theorem holds for all �′ < �.
Now, combining Eqs. (6) and (7), and Theorem 6.6 we have that for any integer
a ∈ {�, n}:

U0(a − �, a) ≤ �p(a − �, a) −
∫ pmax

a−�

p(s1, a)ds1 −
∫ a

0
p(a − �, s2)ds2

Since p is nonnegative, decreasing in its first argument, and increasing in its second
argument, this can be bounded above by:

U0(a − �, a) ≤ �p(a − �, �) −
∫ a−1

a−�

p(s1, a)ds1 −
∫ a

1+a−�

p(a − �, s2)ds2

≤ �p(a − �, �) −
a−1∑

s1=1+a−�

p(s1, a) −
a−1∑

s2=1+a−�

p(a − �, s2).

By the definition of p�′ , this can be bounded above by:

U0(a − �, a) ≤ �p(a − �, �) − 2
�−1∑
�′=1

p�′ .

In order to obtain a finite competitive ratio, the expected utility of the broker must
be nonnegative regardless of the types of the agents. Thus U0(a − �, a) ≥ 0, and:

p(a − �, �) ≥ 2

�

�−1∑
�′=1

p�′
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By the inductive hypothesis

p(a − �, �) ≥ 2

�

�−1∑
�′=1

p∗
�′ .

Since a is any integer in {�, . . . , n}:

p� ≥ 2

�

�−1∑
�′=1

p∗
�′ = 2

�

(
1 +

�−1∑
�′=2

�′ + 1

3

)
p1

= 2

�

(
�(� + 1)

6

)
p1 = � + 1

3
p1.

PROOF (OF THEOREM 6.5). From the above lemma, p(0, n) ≥ n+1
3 p1. This im-

plies that p1 ≤ 3
n+1 , and the competitive ratio is no less than �pmax−pmin+1

3 .

Some mechanisms are not direct, so the theorem above does not apply. An indirect
mechanism may motivate the agents to lie (about valuations and/or start and end
times). Furthermore, the mechanism may not even ask the agents to communicate
their types: the mechanism may instead have the agents signal about their types in
a different action space, which may involve an agent taking multiple actions over
time.

It turns out that we can obtain the same lower bound as above even for such
indirect mechanisms. To achieve this, we require that each agent have a dominant
strategy in the mechanism, that is, the strategy of a bidder must be optimal regardless
of the other agents’ bids. (We do not require that the dominant strategy be to tell
the truth.) We also require that the mechanism be (ex-post) individually rational;
that is, each bidder is no worse off by participating.9 Under these requirements, we
can use the revelation principle10 and the above technique to get the same bound.

THEOREM 6.8. No individually rational dominant-strategy mechanism can
achieve a competitive ratio for profit lower than �pmax−pmin+1

3 .

7. Conclusions and Open Questions

In this article, we have derived bounds on competitive ratios for a number of basic
online market clearing problems. These include the objectives of maximizing profit,
maximizing liquidity according to several natural measures, and maximizing social
welfare. Using the abstraction of online incomplete interval graphs, we obtain
algorithms that achieve best-possible competitive ratios for most of these problems,
and for the rest we are within a factor of two of the best that is achievable online.
For the objective of maximizing number of trades, we demonstrate that by allowing
the online algorithm to subsidize matches with profits from previous trades, we can

9A direct mechanism that is incentive compatible and individually rational for any pair of valuations is
an individually rational, dominant strategy mechanism. However, in a dominant strategy mechanism,
there is no assumption that the mechanism can elicit the true types of the agents.
10 It is important to note that the revelation principle does not hold for Bayes–Nash mechanisms in
the online case.
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TABLE I. MAIN RESULTS OF THIS ARTICLE

Objective Upper Bound Lower Bound
Profit (non-IC) ln(pmax − pmin) + 1 ln(pmax − pmin) + 1
Profit (non-IC) (1 + ε) wrt fixed threshold

with assumptions
Profit (IC) pmax − pmin �(pmax − pmin)
Profit (IC) (1 + ε) wrt fixed prices

with assumptions
# trades (non-IC) 2 (no subsidy) 4/3 (no subsidy)

1 (with subsidy)
Buy/sell volume (non-IC) 2(ln(pmax/pmin) + 1) (no subsidy) ln(pmax/pmin) + 1

ln(pmax/pmin) + 1 (with subsidy)
Social welfare (non-IC) r = ln pmax−pmin

(r−1)pmin
r = ln pmax−pmin

(r−1)pmin

Social welfare (IC) 2 max(2, ln(pmax/pmin))

perform as well as the optimal offline algorithm without subsidy. Thus, the ability
to subsidize trades is at least as powerful as knowing the future, in this context.

It is a somewhat unfortunate fact about competitive analysis that no algorithm
can guarantee better than a logarithmic ratio for maximizing profit. This lower
bound occurs because we are comparing the performance of our online algorithm
to the best performance of any arbitrary algorithm in hindsight. However, if we
restrict our comparison class to a fixed, finite set of algorithms (such as the class of
all fixed-threshold algorithms), and if we assume the data is not too “bursty”, then
we can use online learning results to achieve a 1 + ε ratio, as we demonstrate in
Section 5.1.

We also consider the issue of incentive compatibility, and show that our Greedy
algorithm is incentive-compatible for the goal of maximizing social welfare. Thus,
losing only a factor of 2 in competitive ratio we can achieve this desirable property.
In fact, we show the Greedy algorithm is quite robust in that it maintains its com-
petitive ratio even if bidders are allowed to modify their bids over time, making the
task even harder on the online algorithm. For profit maximization, we show that
no direct algorithm can achieve a sublinear competitive ratio, though we present
an algorithm that has competitive ratio approaching 1 with respect to the best fixed
pair of buy/sell prices when bids are not too bursty. We summarize our main results
in Table I.

7.1. OPEN PROBLEMS. There are a number of open problems with respect to
incentive-compatibility. For example in terms of competing with respect to the best
fixed pair of buy and sell prices for profit maximization, our results require that
bids not be too “bursty” (at most B alive at any one time). On the other hand,
Deshmukh et al. [2002] provide algorithms for the offline problem where all bids
are concurrent. Perhaps some combination can handle the general case.

There is also a gap between our best upper bound (2) and our best lower bound
(3/2) for algorithms for the incomplete interval graph vertex-selection problem
when expiration times are unknown. Algorithm 2 achieves an optimal matching but
it needs to know the expiration times in advance. Related to this question, we do
not know whether the Greedy algorithm can be improved upon for the setting of
Section 5.2 in which a bidder may submit a bid whose value varies with time.

There has also been recent interest in offline clearing algorithms for combina-
torial exchanges where a bid can concern multiple distinguishable items (possibly
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multiple units of each) [Sandholm 2002; Sandholm and Suri 2003; Sandholm et al.
2002]. A bid could state, for example, “I want to buy 20 IBM, buy 50 DELL, sell
700 HP, and get paid $500”. As we transformed the online clearing problem to
an online matching problem in an incomplete interval graph, the online problem
of maximizing profit or liquidity in a combinatorial exchange can be transformed
to the problem of finding a matching on an incomplete interval hypergraph on-
line. While we can show with a simple example that a maximum matching cannot
be achieved online in the hypergraph problem, it might be possible to achieve a
matching with an expected size no less than half of the maximum one.

One direction of future research is to extend these results to settings where there
is a market maker who can carry inventory of the commodity (sell short and long)
rather than simply deciding which bids to match.

Appendix A. Lemmas on Matchings

In this section, we prove some lemmas required for the proof of the main theorem
in Appendix B. We will use some standard facts and definitions from graph theory;
for a review, see Kozen [1991]. Paths will be represented as sets of edges, although
sometimes it will be easier to write them as a sequence of vertices. V (P) is the set
of vertices of a path P . We will also use some well-known lemmas:

LEMMA A.1. Given W ⊂ V , a perfect matching M on W , and v, v ′ ∈ V − W ,
if there exists some augmenting path P with respect to M from v to v ′, then M ⊕ P
is a perfect matching on W ∪ {v, v ′}.

LEMMA A.2. The symmetric difference of two matchings M and M ′ consists
of alternating paths and alternating cycles with respect to M.

LEMMA A.3. A vertex v ∈ V is the endpoint of an alternating path in the
symmetric difference of two matchings M and M ′ if and only if it is in V (M)⊕V (M ′).

PROOF. Suppose a vertex is in V (M)⊕ V (M ′). Then, it has an incident edge in
either M or M ′, but not both. Hence, it can only have one incident edge in M ⊕ M ′,
making it an endpoint of an alternating path.

Suppose a vertex is at the endpoint of a path in M ⊕ M ′. Then, it has one edge in
M ⊕ M ′. Observe that, if it has an odd number of edges incident to it in M ⊕ M ′,
the number of edges in M to it plus the number of edges in M ′ to it is also odd. But
since the latter is bounded by zero and two, it is one. Therefore, the vertex cannot
be in both V (M) and V (M ′).

Augmenting paths capture some of the local properties of matchings. But they do
not capture how to remove elements from a matching, or how to replace an element.
Since these are important concepts in the online setting, we introduce some other
types of paths. These paths have properties very similar to those of augmenting
paths.

Definition A.4. An abridging path with respect to a matching M is an alter-
nating path whose first and last edges are in M . A replacement path with respect
to M is an alternating path whose first edge is in M , and whose last endpoint is not
in V (M).
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LEMMA A.5. Given v, v ′ ∈ W , and a perfect matching M on W , if there exists
some abridging path P with respect to M from v to v ′, then M ⊕ P is a perfect
matching on W − {v, v ′}.

The proof is similar to the proof of Lemma A.1.

LEMMA A.6. Given v ∈ W and v ′ ∈ V − W , and a perfect matching M on W ,
if there exists some replacement path P with respect to M from v to v ′, then M ⊕ P
is a perfect matching on W ∪ {v ′} − {v}.

The proof is similar to the proof of Lemma A.1.

LEMMA A.7. Suppose W and W ′ are subsets of V , and there exists a perfect
matching on W and a perfect matching on W ′, then there exists a partition of
W ⊕ W ′ into sets of size two:

{{a1, b1}, {a2, b2}, . . . , {ak, bk}}
such that for all 1 ≤ i ≤ k, there exists a perfect matching on W ⊕ {ai , bi }.

PROOF. Define M to be a perfect matching on W and M ′ to be a perfect matching
on W ′. Then M ⊕ M ′ consists of a set of alternating paths and cycles. Here, we are
only concerned with the paths. Since these paths only begin and end at points in
W ⊕ W ′, we can partition W ⊕ W ′ where each set is the set of endpoints of a path
in M ⊕ M ′. Consider a set in this partition {a, b}, where P is the path between the
two elements of the set. There are three possibilities:

(1) Both vertices are in W ′ − W . Then P is an augmenting path, and M ⊕ P is a
perfect matching on W ∪ {a, b} = W ⊕ {a, b}.

(2) One vertex is in W − W ′ and one vertex in W ′ − W . In this case, the path P
is a replacement path. Without loss of generality, assume a ∈ W − W ′. Then
M ⊕ P is a perfect matching on W ∪ {b} − {a} = W ⊕ {a, b}.

(3) Both vertices are in W − W ′. The first and last edges are not in M ′, because a
and b are not in W ′. Also, the first and last edges are in M ⊕ M ′ ⊆ M ∪ M ′.
Therefore, the first and last edges are in M , and P is an abridging path. M ⊕ P
is a perfect matching on W − {a, b} = W ⊕ {a, b}.

COROLLARY A.8. If W ⊆ V has a perfect matching, but it is not one of the
largest sets that has a perfect matching, then there exists v, v ′ ∈ V − W such that
W ∪ {v, v ′} has a perfect matching.

Appendix B. Proof of Theorem 2.3 (Main Theorem)

Assume W is the set of selected vertices, then we define H1,H2, and H3 as follows:

H1: For any expired, unmatched vertex w , there does not exist any untaken vertex
w ′ such that there is a perfect matching on W ∪ {w, w ′}.

H2: For any matched vertex w , there does not exist an untaken vertex w ′ such that
there is a perfect matching on W ∪ {w ′} − {w} and t f (w) > t f (w ′).

H3: For any two unexpired vertices w, w ′ ∈ W , there exists no perfect matching
on W − {w, w ′}.

Let H denote the conjunction of the three invariants H1, H2, and H3. We will prove
that if these invariants of the algorithm hold before an event occurs, they will hold
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after the event. The possible events that can occur are a vertex being introduced,
expiring without being matched, or expiring and being added.

LEMMA B.1. If H holds before a vertex w ′ is introduced, H holds after the
event.

PROOF. We prove this for all three parts of H .

H1: Consider w to be an expired, unmatched vertex. Here we need to prove that
there exists no perfect matching on W ∪ {w, w ′}. We will prove this by con-
tradiction. Suppose that M is a perfect matching on W ∪ {w, w ′}. Define v
such that (w ′, v) ∈ M . Let us define M ′ = M − {(w ′, v)}. Then, M ′ is a per-
fect matching on W − {v} + {w}. Since w has expired and v has not expired,
t f (w) < t f (v). This contradicts the inductive hypothesis H2.

H2: Suppose that w ∈ W and t f (w) > t f (w ′). We need to prove that there does
not exist a perfect matching for W ∪ {w ′} − {w} by contradiction, assuming
there exists a perfect matching M .

Define v such that (w ′, v) ∈ M . Observe that t f (v) > ti (w ′), so v has not
expired. Neither has w , since t f (w) > t f (w ′) > ti (w ′). However, M − (w ′, v)
is a perfect matching on W − {w, v}. This is a contradiction of H3.

H3: This cannot have any effect.

LEMMA B.2. If H holds before a vertex w expires without being matched, H
holds after the event.

PROOF. We prove this for all three parts of H .

H1: Suppose w ′ is an untaken vertex. We need to prove that there does not
exist a perfect matching on W ∪ {w, w ′}.
(a) Assume w ′ expired. By H1, there there did not exist a perfect matching

on W ∪ {w, w ′}.
(b) If there existed an unexpired, unmatched vertex w ′ such that W ∪

{w, w ′} had a perfect matching, then w would have been matched.
H2, H3: This cannot have any effect.

LEMMA B.3. If H holds before a vertex v expires and is added with v ′, H holds
after the event.

PROOF. We prove this for all three parts of H .

H1: Suppose w is an expired, unmatched vertex, and w ′ is an untaken vertex. We
need to prove that there does not exist a perfect matching on W ∪{v, v ′, w, w ′}.
We can prove this by contradiction.

Observe that there exists a perfect matching on W . If there existed a perfect
matching on W ∪ {v, v ′, w, w ′}, then, by Lemma A.7, one of the following
conditions holds:
(a) There exists a perfect matching on W ∪{v ′, w}. This would contradict H1.
(b) There exists a perfect matching on W ∪ {v, w}. This would contradict H1.
(c) There exists a perfect matching on W ∪{w, w ′}. This would contradict H1.

H2: Consider an arbitrary vertex w in W ∪ {v, v ′}, and an arbitrary untaken vertex
w ′. Assume that W ∪ {v, v ′, w ′} − {w} is a perfect matching. We must prove
that t f (w ′) ≥ t f (w).
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(a) w = v . Then W ∪ {v, v ′, w ′} − {w} = W ∪ {v ′, w ′}. So by H1, w ′ has not
expired. Then t f (w ′) ≥ t f (w), because w is just expiring.

(b) w = v ′. Then W ∪ {v, v ′, w ′} − {w} = W ∪ {v, w ′}. So by H1, w ′ has not
expired. Thus if t f (w) > t f (w ′), then w ′ would have been added instead
of w .

(c) w ∈ W . Then by Lemma A.7 applied to W and W ∪{v, v ′, w ′}− {w}, one
of the following conditions holds:

(i) W ∪{v}− {w} and W ∪{v ′, w ′} have perfect matchings. Then by H1,
w ′ has not expired, and t f (w) < t f (v), so w has expired.

(ii) W ∪{v ′}− {w} and W ∪{v, w ′} have perfect matchings. Then by H1,
w ′ has not expired, so t f (w ′) ≥ t f (v ′). Also, t f (w) ≤ t f (v ′).

(iii) W ∪{w ′}− {w} has a perfect matching. Then by H2, t f (w ′) ≥ t f (w).
H3: A vertex v expires and is added with v ′. Suppose that w, w ′ ∈ W ∪ {v, v ′}.

Assume that W ∪{v, v ′}− {w, w ′} has a perfect matching. We must prove that
w or w ′ has expired. Consider three cases:
(a) w = v . Then w has expired.
(b) w = v ′. Then W ∪ {v, v ′} − {w, w ′} = W ∪ {v} − {w ′}. Thus by H2,

t f (v) ≥ t f (w ′), so w ′ has already expired(a contradiction).
(c) w ∈ W . Then by Lemma A.7 applied to W and W ∪{v, v ′}− {w, w ′}, one

of the following conditions holds:
(i) W ∪ {v} − {w} has a perfect matching. By H2, t f (v) ≥ t f (w), so w

has expired.
(ii) W ∪ {v} − {w ′} has a perfect matching. By H2, t f (v) ≥ t f (w ′), so w ′

has expired.
(iii) W − {w, w ′} has a perfect matching. By H3, either w or w ′ has

expired.

PROOF (OF THEOREM 2.3). We will prove by induction that H holds at the ter-
mination of the algorithm. First, observe that H1, H2, and H3 are all properties of
introduced vertices, so when there are no vertices introduced, they cannot be vio-
lated. This is the base case. Inductively, by Lemmas B.1, B.2, B.3, if these properties
hold before an event, they hold afterward as well. Thus, H holds at the termination
of the algorithm. Specifically, H1 implies that there exists no {v, v ′} ⊆ V − W such
that W ∪ {v, v ′} has a perfect matching. By Corollary A.8, W is one of the largest
sets with a perfect matching.

Appendix C. Proof of Theorem 5.1 (Performing Nearly as Well as the Best
Threshold in Hindsight)

The setting is we have N algorithms (“experts”) and we can switch from one to
another at cost ≤ D. At each time step (introduction of a bid) the algorithms
experience gains between 0 and gmax. (We use gmax instead of pmax because we will
be using “p” for probabilities). At any point in time, our overall “master” algorithm
will be a probability distribution over the N base algorithms. Specifically, we use the
standard multiplicative-weights algorithm [Littlestone and Warmuth 1994; Freund
and Schapire 1996] as follows:

—We begin with each base algorithm having a weight wi = 1. Let W = ∑
i wi .

Our probability distribution over base algorithms will be pi = wi/W .
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—After each event, we update weights according to the rule:

wi ← wi (1 + ε̂)gi /gmax,

where gi is the gain of the i th algorithm, and ε̂ is defined below. We then update
our probability distribution pi accordingly. Note: if �p is the old distribution
and �p′ is the new distribution, we can do this such that the expected movement
cost is at most D

2 L1(�p, �p′) where L1(�p, �p′) is the L1 distance between the two
distributions.

THEOREM C.1. If we use ε̂ = εgmax

2D , and under the assumption that D ≥ gmax,
the above algorithm produces an expected gain at least

OPT(1 − ε) − 2D
ε

ln N ,

where OPT is the gain of the best of the N base algorithms in hindsight.

PROOF. Suppose the algorithm currently has weights w1, . . . , wn , observes a
gain vector g1, . . . , gn and then updates the weights to w ′

1, . . . , w ′
n , where w ′

i =
wi (1 + ε̂)gi /gmax . Let W = ∑

i wi and let W ′ = ∑
i w ′

i . Let pi = wi/W and let
p′

i = w ′
i/W ′.

The expected gain of the online algorithm from this event is
∑

i pi gi , which we
will call Et if this is event t . The expected cost due to moving from probability
distribution �p to distribution �p′ is at most

D
∑

i :p′
i >pi

(p′
i − pi ) ≤ D

W

∑
i :p′

i >pi

(w ′
i − wi ) ≤ D

W
(W ′ − W ) = D

(
W ′

W
− 1

)
,

where the first inequality above uses the fact that W ′ ≥ W , and the second inequality
uses the fact that w ′

i ≥ wi for all i , not just the ones such that p′
i > pi .

The next step in the analysis is to upper bound W ′ as a function of W . To do this,
we use the fact that for x ≤ 1, (1 + α)x ≤ 1 + xα. So,

W ′ ≤
∑

i

wi

(
1 + ε̂gi

gmax

)
= W

∑
i

pi

(
1 + ε̂gi

gmax

)
= W

(
1 + ε̂

gmax
Et

)
.

This upper bound on W ′ is useful in two ways. First, we can now analyze the
expected movement cost: D(W ′/W − 1) ≤ D( ε̂

gmax
Et ). So, our total expected gain

for event t is at least Et (1 − Dε̂
gmax

).
Second, we can use this to give an upper bound on the total weight Wfinal at the

end of the process:

Wfinal ≤ N
∏

t

(
1 + ε̂

gmax
Et

)
.

This upper bound can be compared to a lower bound

Wfinal ≥ (1 + ε̂)OPT/gmax

which is simply the final weight of the best of the N algorithms. Taking logs on the
upper and lower bounds to Wfinal and using the fact that ln(1 + x) ∈ [x − x2/2, x]
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for x ∈ [0, 1], we have:

OPT

gmax
(ε̂−ε̂2/2) ≤ OPT

gmax
ln(1+ε̂) ≤ ln N+

∑
t

ln(1+ ε̂

gmax
Et ) ≤ ln N+ ε̂

gmax

∑
t

Et .

So, ∑
t

Et ≥ OPT(1 − ε̂/2) − gmax

ε̂
ln N .

Finally, using the fact that the total expected gain Galg (with movement costs in-
cluded) is at least (1 − Dε̂

gmax
)
∑

t Et , and using our definition ε̂ = εgmax/(2D), we
have:

Galg ≥ OPT(1− ε̂/2)(1−ε/2)− (1−ε/2)
2D
ε

ln N ≥ OPT(1−ε)− 2D
ε

ln N .
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